Counting the platelets: a robust and sensitive quantification method for thrombus formation.
نویسندگان
چکیده
Flow chambers are common tools used for studying thrombus formation in vitro. However, the use of such devices is not standardised and there is a large diversity among the flow chamber systems currently used, and also in the methods used for quantifying the thrombus development. It was the study objective to evaluate a new method for analysis and quantification of platelet thrombus formation that can facilitate comparison of results between research groups. Whole blood was drawn over a collagen patch in commercial Ibid or in-house constructed PDMS flow chambers. Five percent of the platelets were fluorescently labelled and z-stack time-lapse images were captured during thrombus formation. Images were processed in a Python script in which the number of platelets and their respective x-, y- and z-positions were obtained. For comparison with existing methods the platelets were also labelled and quantified using fluorescence intensity and thrombus volume estimations by confocal microscopy. The presented method was found less sensitive to microscope and image adjustments and provides more details on thrombus development dynamics than the methods for measuring fluorescence intensity and thrombus volume estimation. The platelet count method produced comparable results with commercial and PDMS flow chambers, and could also obtain information regarding the stability of each detected platelet in the thrombus. In conclusion, quantification of thrombus formation by platelet count is a sensitive and robust method that enables measurement of platelet accumulation and platelet stability in an absolute scale that could be used for comparisons between research groups.
منابع مشابه
پیشرفت هایی جدید در زمینه شناخت پلاکتها
Platelets as cellular elements are the constituants of blood tissue and their main function is to participate in hemostatic processes. The glycocalyx which intimately surrounds the platelets contains a number of glycoproteins which are responsible for blood group specificity (ABO), tissue compatibility (human leukocyte antigen = HLA) , and platelet antigenicity. Platelets contain granules which...
متن کاملIn vivo dynamic real-time monitoring and quantification of platelet-thrombus formation: use of a local isotope detector.
Current methods for monitoring thrombosis and thrombus growth are invasive and provide only single-time-point data. Animal models rely mainly on flow changes as a surrogate of thrombus formation. Our aim was to validate a unique potentially noninvasive system to detect and quantify dynamic thrombus formation in vivo by using a porcine model of carotid artery injury. Thrombus growth was monitore...
متن کاملمطالعه سطوح بیان گیرندههای چسبندگی پلاکتی در فراوردههای پلاکتی تغلیظ شده از پلاسمای غنی از پلاکت
Background: Major platelet adhesive receptors that contribute significantly to thrombus formation include platelet receptor glycoprotein Ibα (GPIbα) of the GPIb-IX-V complex and platelet glycoprotein VI (GPVI). GPIbα plays a crucial role in platelet tethering to sub-endothelial matrix, which initiates thrombus formation at arterial shear rates, whereas GPVI is critically involved in platelets f...
متن کاملDynamic monitoring of platelet deposition on severely damaged vessel wall in flowing blood. Effects of different stenoses on thrombus growth.
The formation of an arterial thrombus is a dynamic process that depends upon the characteristics of blood flow, the triggering substrate, and the blood components. We have developed and characterized a sensitive and specific computer-assisted nuclear scintigraphic method to study the dynamics of platelet deposition on severely damaged vessels both in vitro and in vivo in nonstenotic and stenoti...
متن کاملLocalization and quantification of platelet-rich thrombi in large blood vessels with near-infrared fluorescence imaging.
BACKGROUND Imaging of thrombus formation in vivo has been limited by the inability to directly visualize and measure thrombi in large blood vessels in real time. Near-infrared light, with its superior tissue penetration and reduced scatter, could potentially solve this problem. METHODS AND RESULTS Platelets were labeled with the near-infrared fluorophore IR-786. Optimal total fluorescence yie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Thrombosis and haemostasis
دوره 115 6 شماره
صفحات -
تاریخ انتشار 2016